Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation
نویسندگان
چکیده
A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells.
منابع مشابه
Seawater acclimation and inositol monophosphatase isoform expression in the European eel (Anguilla anguilla) and Nile tilapia (Orechromis niloticus).
Inositol monophosphatase (IMPA) is responsible for the synthesis of inositol, a polyol that can function as an intracellular osmolyte helping re-establish cell volume when exposed to hypertonic environments. Some epithelial tissues in euryhaline teleosts such as the eel and tilapia encounter considerable hyperosmotic challenge when fish move from freshwater (FW) to seawater (SW) environments; h...
متن کاملTilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis.
This study aimed to determine the regulation of the de novo myo-inositol biosynthetic (MIB) pathway in Mozambique tilapia (Oreochromis mossambicus) brain following acute (25 ppt) and chronic (30, 60 and 90 ppt) salinity acclimations. The MIB pathway plays an important role in accumulating the compatible osmolyte, myo-inositol, in cells in response to hyperosmotic challenge and consists of two e...
متن کاملBasolateral inositol transport by intestines of carnivorous and herbivorous teleosts.
Myoinositol transport by isolated basolateral membrane vesicles was characterized from intestines of the herbivorous tilapia (Oreochromis mossambicus) and the carnivorous eel (Anguilla anguilla). [3H]myoinositol transport occurred by nonelectrogenic, facilitated diffusion independent of cation gradients and was inhibited by phloretin (Ki = 0.6 and 0.9 mM for tilapia and eel, respectively) but n...
متن کاملOlfactory sensitivity to bile fluid and bile salts in the European eel (Anguilla anguilla), goldfish (Carassius auratus) and Mozambique tilapia
INTRODUCTION Bile is a multi-functional fluid that acts both as a detergent to aid lipid digestion, and as an excretory fluid for substances that cannot be eliminated by urine (Hofmann, 1999). Bile salts, which are a key constituent of bile, are steroidal compounds with a characteristic fused four-carbon-ring skeleton often found conjugated with glycine, taurine, cysteine or sulphate groups (Go...
متن کاملTrends in the evolution of the prodynorphin gene in teleosts: cloning of eel and tilapia prodynorphin cDNAs.
The detection of the prodynorphin gene in anuran amphibians and lungfishes may indicate that this gene arose as a result of the duplication of the proenkephalin gene early during the divergence of the Sarcopterygii, or that this gene may predate the divergence of the ray-finned fish and the lobe-finned fish. The cloning of prodynorphin-related genes from the pufferfish and zebrafish supports th...
متن کامل